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The Complete Spectrum of Image Line

TULLIO ROZZI, SENIOR MEMBER, IEEE, AND JOHN S. KOT

Abstract —As image line is an open wavegnide, its finite, discrete

spectrnm of bouud modes is complemented by a continuum. The latter

plays an important role in discontinuity and radiation problems arising in

circuit components and antenna applications. However, the continuous

spectrum has failed to receive attention so far, possibly because of the

essential two-dimensionaf, nonseparable nature of the problem. 1ss this

paper, we derive from basic principles the complete orthonormalized

spectrum, under LSE/LSM assumptions, by means of a method of “par-

tiaf wave phase shifts.” The results are applicable to radiation and disconti-

nuity problems in image line.

I. INTRODUCTION

I MAGE LINE is a structure of considerable theoretical

interest, not only on its own merits, but also as a basic

example of open waveguide of two-dimensional, nonsepa-

rable cross section [1].

Not surprisingly, the bound modes of image line have

received considerable attention, and have been the object

of numerical [2] and analytical treatment [3], by enclosing

the guide in walls” far removed” [4] and retaining the open

waveguide configuration [5]. It is fair to say that accurate

results for the bound (discrete) modes have now been

obtained by all of the above methods. The germane prob-

lem of the “rib waveguide” is also relevant to the theory

(see [6], for instance).

Image line, however, is an open waveguide and conse-

quently its spectrum includes a continuous range of modes.

Excitation of the latter takes place due to discontinuities,

such as steps, gaps, and bends, or when perturbations are

located close to the air-dielectric interface, such as metal

strips and radiating dipoles, if image line is to be used as a

leaky-wave antenna [7]–[9]. Therefore, with a view to ana-

lyzing practical components, it is necessary to obtain a

complete spectral characterization, inclusive of the contin-

uum.

Once the complete spectrum is found, it is possible to

construct the appropriate Green’s function of the guide for

use in the treatment of discontinuity problems. As stated

above, the discrete components can be found by a variety

of methods. Once found, they can be normalized over the

two-dimensional cross section, if need be, numerically. The

continuum, however, is not known and, moreover, its

orthonormalization poses an interesting problem.
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Fig. 1. Image line cross section (even E,, modes).

The task of normalizing the continuum is already non-

trivial and tedious for one-dimensional multilayer guides.

In image line, the problem is essentially complicated by

the nonseparable nature of the problem, caused by the

presence of the 90° diffraction edges (the dielectric cor-

ners), near which the transverse field becomes singular

[10]. It is the very presence of these corners that causes the

discrete modes to be essentially hybrid. The hybrid con-

tent, however, decreases very rapidly with aspect ratio

(h/a —see Fig. 1) so that the much simpler pure

LSM/LSE approximation does apply very well down to

and close to the dielectric cutoff, for all aspect ratios

smaller than unity, provided, that is, the edge conditions

are still accounted for in the field distribution [11].

It is explicitly noted at this point that each discrete

mode, existing as an independent field structure, must

individually satisfy all boundary and edge conditions.

Hence they need to be hybrid in general. A component of

the continuum which cannot be excited individually is not

so restricted; simple continuity (not analyticit y) at the

dielectric interfaces, excluding corners, is all that is re-

quired. The global continuum (radiative and nonradiative)

will satisfy all the required conditions. In particular, a

component of the continuum need not be hybrid, and a

globally hybrid radiation field can be represented by a

superposition of LSE and LSM radiation modes.

For the one-dimensional multilayer slab case, an elegant

method, based on the transverse equivalent circuit inter-

pretation and formal properties of the transverse Green’s

function, can be found in a textbook such as [12]. A clear

treatment of the mathematical foundation of the process

is, in fact, to be found in [13]. The extension to a separable

two-dimensional cross section follows directly from the

standard properties of Fourier integrals. The nonseparable

two-dimensional problem is complicated as mentioned be-
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Fig. 2.

(a) Y

Transverse equivalent circuit of a grounded slab,

fore, and does not seem, so far. to have drawn the atten-

tion of the applied mathematicians. In [14], a technique

based on a transverse equivalent network of the “ Hilbert”

type was first introduced for the inset guide. There the

geometry separates conveniently into a free-space region

and a homogeneously filled slot region with discrete spec-

trum.

This is not the case for image line, but the basic concept

still applies. In physical terms, tl& is tantamount to con-

sidering the scattering of each partial wave of the air

region of Fig. 1 at the discontinuous interface x = O into

the full spectrum of the slab region and recombining the

individual contributions into an overall “phase shift” for

the impinging partial wave. The result of this procedure is

that the “shifted” partial waves are orthonormalized- to a

delta function of the transverse wavenumber ~,= (kX, k,)

that identifies each partial wave in the air region.

In this contribution, the analysis will be developed for

the even LSM (TMY) polarization, having H.v = O and E,

as the main electric field component, whereas the LSE

analysis proceeds along dual lines. An arbitrary radiation

field can be described as a superposition of the LSM and

LSE continua, as described above.

II. THE NORMALIZED SPECTRUM OF THE

SLAB WAVEGUIDE

The limiting case of the image guide for small aspect

ratio is a dielectric slab over a ground plane. Inasmuch as

the normalized complete spectrum of the grounded slab,

illustrated in Fig. 2(a), and some of the concepts and

notations used in deriving it will be required in the follow-

ing development, it is useful to retrace briefly the steps

involved. A detailed discussion can be found in [12].

If the expansion of the field takes place in terms of the

transverse wavenumber in the air region, ky, taken as an

independent quantity, the wavenumber in the z direction,

/3, is determined by

~’=k; -k;. (1)

The completeriess of the TM spectrum of the slab can then

be stated as

z9s(Y)9s(Y’)+~m~ky9(Y;‘07(Y’; ‘!”)
.$

=6r(y)8(y– y’) (2)

where the summation is over the finite number of surface

waves, the integral is over the continuum, and the or-

thonormalization is such that

J
m dy

—%(Y) 9r(Y)=~sr (3a)
-h %(Y)

/

w dy
—%(Y) V(YWJ=O

–h ‘r(~)

(3b)

J
cc dy

—g(y; kY)T(y; k;) =~(k, –k;). (3c)
-h ‘r(y)

It is a well-known general property of the Sturm-Liouville

equation, in this case the transmission line equation for

propagation in the y direction, that the Green’s function

integrated over a path C in the complex k; plane to

include all singularities yields the delta function. The sin-

gularities are constituted by the set of discrete poles,

corresponding to the discrete spectrum, and branch line

corresponding to the continuum, namely

1

J(‘– g J’y’;k; )%=’2vj ,
r(Y)~(Y -Y’). (4)

The Green’s function g is constructed from two indepen-

dent solutions of the transverse transmission line equation:

Cosk(y+lz)
F= (5a)

COSkh

where

satisfying the boundary conditions for y <0 and

satisfying the boundary conditions for y >0 such that

~=1=1 at y=O. (7)

We have then

(8)

where Z is the total of the transverse equivalent circuit of

Fig. 2(b) (the Wronskian of the transmission line equation

which is independent of position):

ti~02= kY– ‘~ tankh. (9)
r

It is noted for future use that, with the above choice of

voltage amplitudes, Z represents also the complex power

of the transverse equivalent circuit.
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It canalso beseenthat the occurrence of apoleof g in

the complex k; plane at k~=k~, say, coincides with the

vanishing of the total susceptanceof thetransverse equiva-

lent network. In order to recover (2) from (4), it is then

sufficient to isolate the residues of the poles and modify

theintegration path seas to go arozazd the branch line in

the k; plane, by which process (4) can be rewritten, using

(5) and (6), as

which satisfies implicitly the orthonormalization condi-

tions (3). It is noted that the angle ii above represents, in

fact, the phase shift a ray with propagation constant

(ky, B) undergoes upon impinging on the slab and

reemerging from it.

111. DISCRETE SPECTRUM OF IMAGE GUIDE—

LSM FORMULATION

From a y-directed electric Hertzian potential Be=

;+ (x, y) e-@z, the following field components are recov-

ered:

2 ccl

/

f(y:kv)~(y’;ky)
+– dky k, Im

E== – j~ dv~e

IT() – jticoZ(kY) (16)
HX = – c@?+, HY=O

.

In (10), it is then possible to make the identification
Considering that we have chosen to view the plane x = O

as the discontinuous interface, that the field is TE to x,
2 and that we want to keep the transverse electric field

‘s(y) =l-~~z f’]’

y <0 (11) singular at the corner as the unknown, we shall proceed

with an admittance formulation in terms of the pair Ey, Hz.

Hence, for a plane traveling wave in air with x-directed

wavenumber kX, the modal admittance is

and similarly for y >0, yielding the well-known expres-
kY

sions for the TM surface wave of a grounded slab: Yo=:=— (17)

Cosk, (y+k)
tip o

%( Y)=~s Cosk ~ , y<o (12a) while for a short-circuited ‘section of length a and x-
S

directed wavenumber q the driving point admittance is
= ~,e-YsY y>o (12b) n

with (18)

1
1/2

2CY Assuming an even symmetry in x of $,, EY, and Hz, the

A,=

[

field E, of a bound mode in the region x z O is de;crib-
2

h+; l+; (l+cry.h) ])
able as

s 3

k, {
E,(x, y) =~~dky~(k,) ; cosk>(y + k)#’xlx

y, – ~ tank,h = O. (13)
r =+.(x, y) (19)

A substantially analogous procedure leads to the determi- with

nation of the component of the continuum rp( y, k ~).

Let us introduce in (9) the foIlowing quantity of conve- k~=k;-~j-k;=k;-k;<O

nience:
as for a bound mode k? <0.

k
tanti=- tan kh (14)

In the region x <0, we have

/iycr . .

and substitute (14) in (8). The resulting expression for a $s(x,.,)=z~x,(x) +fmd,v’(,)p::;,; )x(x)
o

component of the continuum corresponding to the value
r r

k,,, O < kY < co, of the y wavenumber is then
(20)

{

where rp,( y ) is the normalized distribution of a TM sur-
2 cosk(y+h)

~(y:k$)= – cosd y <0 (15a)
face wave of the slab, considered monomode, and rp( y, p)

T COS kh ‘ is that of its continuum. Moreover

-[

2
—— cos(kvy + d), y >0 (15b)
T

cosq, (x+a)
x,(x) =

cos q,a
(21)
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X=o

qz+;-~,z-pz (22)

k$ being the y-directed wavenumber of the slab surface

wave in the dielectric ([y I < – h) and y the decay constant

in air (y z O). The amplitudes ~(kY), V,, V’(p) of the spec-

tral components of EY and the corresponding ones of Hz

are related by (l). ,

For a bbund mode (~,> .ko), q is pure imaginary but x

remains real. For real q( ~~,< ko), poles of x occur at

qa=n~j2, n=l,3,5 ..., when the open-circuit stub cor-

responding to the slab region is resonant. At these values

of p., however, a short circuit appears at x = O, where

x =1, and the regions to the left and the right of the

interface are decoupled. In order not to violate the bound-

ary conditions on EY, their contributions to the p integral

must vanish; hence F’( p:) ~ O sufficiently fast for this to

happen and the integral in (20) must be identified with its

principal value ({).

By utilizing the continuity of Hz, E, at x = O it is then

possible to eliminate the amplitudes ~, ~, V’ and establish

the usual integral equation for the unknown field E(y) -

~Y(o, Y), namely,

J(~ G,+ G~+G; )Edy=O (23)
–h

where we have introduced the following quantities:

(24a)

2C0

J
{

k; – kz

Ga(y, y’) = juo- dkY k2_ k; coskYycoskYy’
no Oy

(24b)

G;(y, y’) = jkxo
f

q tan qa
~dp z~ _p2’Y(Y$ P) ’7( Y’3P). (24C)

o 0

We multiply on the left by E(y), integrate over y, and

divide by. (E, rp,)2, where the bracket notation denotes

integration over y. The following scalar dispersion equa-

tion is obtained, which is illustrated by the equivalent

circuit of Fig. 3:

Y,+ Y=+ Y;=O (25)

where

y = (E, G., E)

a {E, q,)2

y,= (E, G;, E)
s

(E, q,)z “

(26a)

(26b)

(26c)

I

Fig 3. Equivalent circuit for transverse resonance equation (26)

wave, Y. that of the air region, and Y,’ that of the

continuous spectrum of the slab.

It is noted that

i)

ii)

iii)

Ya and Y,’ are pure imaginary, for, even when q is

pure imaginary, we still have
,,

qtanqa= –lqltanhlqla.

The Green’; functions G. and G; contain principal

value integrals. Poles of the tan function, arising

from X,, have been excluded before. Simple poles

occur also at kY = k. in (24b) and at p ==k. in

(24c). ~t these points, however, owing to (16), we

have V(kO) = V’(ko) = O.

Y,, and, Y,, the admittances in (25), are functions of

the unknown /3$. The latter is determined by solv-

ing for fl~ the dispersion equation (25).

Once & is found, the field components are determined

from the potential. The required normalization is accord-

ing to

JwdxJ:,dYwx>Y)=l
—a

(27)

where it is noted that a weight factor l/c, is already built

in (2).

Although the normalization constant can be found by

direct integration, it is more effective to use the equivalent

circuit of Fig. 3 by recognizing that the residue of (26) at

resonance fixes Vf, and consequently all other amplitudes,

in such a manner that (27) is satisfied, namely

IV. THE CONTINUOUS SPECTRUM OF IMAGE LINE

This portion of the spectrum was never investigated

before. As the cross section is two-dimensional, it is appar-

ent that an expansion of the continuum must be written in

terms of two independent wavenumbers, the third being

fixed by the wave equation. We choose ( kX, kY) = &l as the

two independent quantities in the air region and, corre-

spondingly, develop the field in the air region in terms of

partial waves of the type

r2
— cos(kXx + (x)

{
; cosky(y+ h).

‘n

It is noted, however, that the “phase shift” a is now a

function of both k. and kY because of the nonseparability.Y, is the driving point admittance seen by the slab surface
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Fig. 4. Multiport equivalent circtit foracomponent of the continuum

It is noted that as the transverse Green’s admittance

function (8) only contains k~(k~), kX, k, can be limited to

the interval O < kX, kY < cc. This is a consequence of

choosing to represent the continuum by a set of standing

waves.

We require that the components of the continuum sat-

isfy the orthogonality condition over the guide cross sec-

tion S:

Jf (t x> Y;k.., ky)$(x>y: k~, kj,)dxdy
s

=8(kX– k:)

8(k, –kj) (28)

This fact imposes a generalization on the concept of the

scalar transverse impedance we met in the previous sec-

tions as follows.
The transverse equivalent circuit appropriate to the new

situation is shown in Fig. 4. The discontinuous interface

x = O acts as an ideal transformer coupling slab compo-

nents with a different wavenumber k., p and partial waves

in air with different wavenurnber kY.

We shall now generalize the method described in Section

II. This involves constructing the transverse Green’s func-

tion from an outward and an inward traveling wave at the

interface x = O.

An outward traveling partial wave in the air region with

wavenumber &f and Fourier amplitude V( &f ) is expressed

as

Correspondingly, there exists a standing wave in the slab

region expressible as

[
fi(x>Y;&)= Qs(ky)xs(x)qs(y )+~m~pQ(ky, p)

1.X(x, p)p(y, p) P(&,). (30)

The continuity equation that replaces (7) is now

fi(y,o;~t) =F(y,o; L,) (31)

which allows the coefficients Q,, Q( kY, p) to be deter-

mined by orthogonalit y of the p,, p ( p ) as

Q,(kY)=~_;~ coskY(y+h)r+. (Y)@ (32a)

Q(k,,,)=~fh~ cosk~(y +h)cp(y, p)aj (32b)

given in (A8), Appendix II.

As a mathematical point, it is noted that the continuum

constructed in the following from the above definition (32)

of the transformer ratio will be automatically orthonormal,

but it will only be orthogonal to the expression of the

bound mode as assumed in (32a). Moreover, the coeffi-

cients Q( k ~; p) are distributions. This is not surprising,

inasmuch as the continuous modes are not square-integra-

ble; nor do they satisfy the edge condition at the dielectric

corners. This poses no real problems, inasmuch as the

coefficients Q only appear under the integral sign. An

alternative, better conditioned approach would be to ex-

pand the partial air waves and the slab spectrum at x = O

in terms of an appropriate discrete set of expanding func-

tions, possibly satisfying the edge condition, and then

evaluate (32) in the transformed domain as the scalar

products of the coefficients of the expansion.

“The impedance looking into the slab region, as seen

from the reference planes at x = O‘, is given by the paral-

lel combination of the admittance of transmission lines,

each corresponding to a spectral component of the slab,

terminated by a short circuit at x = – a. This circuit is

embedded in the transformer Q (see Fig. 4) so that at

x = O‘, we have

+~~wdpq(p)tanq( p)aQ(k.,;P)Q(kj,P) (33)
o

where now

q$2=(c0–l)k; +k~–k~ q’= k; - p’. (34)

In the air region, two different components k~, and k;

do not couple and a component with x-directed wavenum-

ber kX propagates in the positive x direction with a

characteristic admittance kX /ue ~. Hence the admittance

of the air region, in the representation of the partial waves,

is a discrete function of kv with amplitude kx, namely

qao~(k,, k’y) = kX8(k, – kf) (35)

with

The complex power (times –jupO) corresponding to the

component &t = ( kX, kY) is given by

If V(&,) is set equal to unity in (29), from (33), (35), and
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(36), we have Define II as

1 given by

+fm~~q(~)tanq(~)aQ(~y,P)J(P) (37)
o

where

and

J(p) =~m+,Q(k.,d = - +COS(@ – d) (38b)

are derived in Appendix II (eq.(A9)).

In the following, for the sake of compactness, we shall

write the second and third terms in (37) together as

11= (~ dy f“.,

873

the integration over the slab region. This is

dx~Q. (kv)Qn(k{)c osacosa’
.J— h “–u ,Z

2 Cosqn(.x+a) cos%(~+a)
“9AM(Y); (A2)

cos q,, a cos qia

where

The quantity k. denotes either the y-directed wavenumber

of the slab surface wave in air, – jY,, or the continuous
wavenumber p.

By orthogonality of the q. and integration over x, we

have

where n now stands for a component, discrete or continu-

“[

sin(q. –q~)a sin(q. +q~)a
OUS,of the spectrum and the summation for a discrete sum +

or integral over p; correspondingly, T.(y) denotes the slab q. – %( q.+ q; 1
modal distribution. It is again useful to define a “phase 2 Cos a Cos a’

—— ZQn(k.y)Qn(Wshift” a( k~) such that i k;–k~2 .

tana= #- ~q.tanqma Q. J.. (39)
xn

Using (39) in (10) we have

[

F(X) F(X’,y’; k,)
‘kXRe
‘n kX + jkX tan a 1

.
{ : ~Qnxn(x)R(Y)cosa

n

2
.— coskY(y’+ h)cos(kXx’+a)

T

= +(x,Y;k,)+(-J) Y’; h) (40)

from which the components of the continuum can be

identified as

{
y(x, y;kf) = : cosaz Qnxn(x)T. (Y), X<o

n

2
.— coskY(y +h)cos(kXx+ a), X>o.

T
(41)

In Appendix I it is verified by direct integration that the

orthonormalization condition (28) is indeed satisfied by

(41).

APPENDIX I

DIRECT CHECK ON ORTHONORMALITY OF

THE CONTINUUM

“(qntanqna - q~tanq:a). (A3)

In the air region, we have

. ~ cos(kXx + a)cos(klx + a’)
‘n

[

1 sin(a– a’) sin (a+ a’)
.——

Ir kX–k; + kX + k: 1}
( 2 Cos a Cosa’

=i$(k, -kj) ~(k. -k:)- ~ k2_(k4)2

x

).(kXtana-kjtana’) . (A4)

Satisfaction of (Al) requires

~1+~2=8(kX –kJ)8(kY–kj). (A5)

If a second term in (A4) equals 11, this is indeed the case.

It is now verifiable that (A5) holds provided a is chosen

such that

kXtana8(kY–k~) =~Q”(k,)Q.(kJ)q.t~q.~” (A6)
n

We want to verify that the condition Integrating with respect to k~ from O to co, we recover

kXtana= ~J,Q. (kY)q. tanq.a (A7)

n

is satisfied by direct integration. which is just our definition (39) of a.
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APPENDIX II

In (32a), ~. is in fact the Fourier

is given by [15, p. 477]

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vOL. 37, NO. 5, MAY 1989

[6]

transform of p,,. This
[7]

{
Q.(kY) = @.(k,)& &j=j [Y. COSkYh- k,sink,h]

1

[

sin(k, +kY)h + sin(kJ–kY)h
+—

Cos k$h k,+ k), k, – kp
11

In (32b),

Q(kyd=i+y)

[

1 costi sin(k+ky)h
—— .—

~ COSkh k+kY

sin(k–kY)h
+

k–kY
1

+cos(k,h –d)t$(k, -p).

In evaluating

-J,= ~@~kyQs(ky)

from (A8a), we realize that

(A8a)

(A8b)

(A9a)

wsin(k~+kY)k

$~ kskk,

+~sin(k, +ky)
dk, = ~

k.+ k,
dk, = rr

—ix

and that the first square bracket term in (A8a) integrates

to zero [15, p. 406]. Hence, we obtain

r

A,
J,= ‘————

2 cosk,h “

Similarly, in (38b), we obtain

[1]

[2]

[3]

[4]

[5]

J(p)=~mdcyQ(ky,P)

=-+cos(ph–ti). (A9b)
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