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The Complete Spectrum of Image Line

TULLIO ROZZI, SENIOR MEMBER, IEEE, AND JOHN S. KOT

Abstract —As image line is an open waveguide, its finite, discrete
spectrum of bound modes is complemented by a continuum. The latter
plays an important role in discontinuity and radiation problems arising in
circuit components and antenna applications. However, the continuous
spectrum has failed to receive attention so far, possibly because of the
essential two-dimensional, nonseparable nature of the problem. In this
paper, we derive from basic principles the complete orthonormalized
spectrum, under LSE/LSM assumptions, by means of a method of “par-
tial wave phase shifts.” The results are applicable to radiation and disconti-
nuity problems in image line.

I. INTRODUCTION

MAGE LINE is a structure of considerable theoretical

interest, not only on its own merits, but also as a basic
example of open waveguide of two-dimensional, nonsepa-
rable cross section [1].

Not surprisingly, the bound modes of image line have
received considerable attention, and have been the object
of numerical [2] and analytical treatment [3], by enclosing
the guide in walls “far removed” [4] and retaining the open
waveguide configuration [5]. It is fair to say that accurate
results for the bound (discrete) modes have now been
obtained by all of the above methods. The germane prob-
lem of the “rib waveguide” is also relevant to the theory
(see [6], for instance).

Image line, however, is an open waveguide and conse-
quently its spectrum includes a continuous range of modes.
Excitation of the latter takes place due to discontinuities,
such as steps, gaps, and bends, or when perturbations are
located close to the air—dielectric interface, such as metal
strips and radiating dipoles, if image line is to be used as a
leaky-wave antenna [7]-[9]. Therefore, with a view to ana-
lyzing practical components, it iS necessary to obtain a
complete spectral characterization, inclusive of the contin-
uum.

Once the complete spectrum is found, it is possible to
construct the appropriate Green’s function of the guide for
use in the treatment of discontinuity problems. As stated
above, the discrete components can be found by a variety
of methods. Once found, they can be normalized over the
two-dimensional cross section, if need be, numerically. The
continuum, however, is not known and, moreover, its
orthonormalization poses an interesting problem.
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Fig. 1. Image line cross section (even E, modes).

The task of normalizing the continuum is already non-
trivial and tedious for one-dimensional multilayer guides.
In image line, the problem is essentially complicated by
the nonseparable nature of the problem, caused by the
presence of the 90° diffraction edges (the dielectric cor-
ners), near which the transverse field becomes singular
[10]. It is the very presence of these corners that causes the
discrete modes to be essentially hybrid. The hybrid con-
tent, however, decreases very rapidly with aspect ratio
(h/a—see Fig. 1) so that the much simpler pure
LSM/LSE approximation does apply very well down to
and close to the dielectric cutoff, for all aspect ratios
smaller than unity, provided, that is, the edge conditions
are still accounted for in the field distribution [11].

It is explicitly noted at this point that each discrete
mode, existing as an independent field structure, must
individually satisfy all boundary and edge conditions.
Hence they need to be hybrid in general. A component of
the continuum which cannot be excited individually is not
so restricted; simple continuity (not analyticity) at the
dielectric interfaces, excluding corners, is all that is re-
quired. The global continuum (radiative and nonradiative)
will satisfy all the required conditions. In particular, a
component of the continuum need not be hybrid, and a
globally hybrid radiation field can be represented by a
superposition of LSE and LSM radiation modes.

For the one-dimensional multilayer slab case, an elegant
method, based on the transverse equivalent circuit inter-
pretation and formal properties of the transverse Green's
function, can be found in a textbook such as [12]. A clear
treatment of the mathematical foundation of the process
is, in fact, to be found in [13]. The extension to a separable
two-dimensional cross section follows directly from the
standard properties of Fourier integrals. The nonseparable
two-dimensional problem is complicated as mentioned be-
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Fig. 2. Transverse equivalent circuit of a grounded slab.
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fore, and does not seem, so far, to have drawn the atten-
tion of the applied mathematicians. In [14], a technique
based on a transverse equivalent rietwork of the *Hilbert”
type was first introduced for the inset guide. There the
geometry separates conveniently into a free-space region
and a homogeneously filled slot region with discrete spec-
trum.

This is not the case for image line, but the basic concept
still applies. In physical terms, this is tantamount to con-
sidering the scattering of each partial wave of the air
region of Fig. 1 at the discontinuous interface x = 0 into
the full spectrum of the slab region and recombining the
individual contributions into an overall “phase shift” for
the impinging partial wave. The result of this procedure is
that the “shifted” partial waves are orthonormalized-to a
delta function of the transverse wavenumber k, = (k, k)
that identifies each partial wave in the air region. '

In this contribution, the analysis will be developed for
the even LSM (TM”) polarization, having H,=0 and E,
as the main electric field component, whereas the LSE
analysis proceeds along dual lines. An arbitrary radiation
field can be described as a superposition of the LSM and
LSE continua, as described above.

II. THE NORMALIZED SPECTRUM OF THE
SLAB WAVEGUIDE

The limiting case of the image guide for small aspect
ratio is a dielectric slab over a ground plane. Inasmuch as
the normalized complete spectrum of the grounded slab,
illustrated in Fig. 2(a), and some of the concepts and
notations used in deriving it will be required in the follow-
ing development, it is useful to retrace briefly the steps
involved. A detailed discussion can be found in [12].

If the expansion of the field takes place in terms of the
transverse wavenumber in the air region, k , taken as an
independent quantity, the wavenumber in the z direction,
B, is determined by

B2 =k k2. 1)
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The completeriess of the TM spectrum of the slab can then
be stated as

Z(ps(y)%(y’)+f0wdkyqv(y;ky)qv(y’;ky)‘

=¢,(»)0(y—y) (2)
where the summation is over the finite number of surface

waves, the integral is over the continuum, and the or-
thonormalization is such that

[ ;—c(b;—)%(y)%(y) =3, (3a)

[w (—c(i%%(y)w(y;ky) =0 (3b)
fo Z_?yy—)—q’(y; ky)o(yik;) =8(k,~k}). (3c)

It is a well-known general property of the Sturm-Liouville
equation, in this case the transmission line equation for
propagation in the y direction, that the Green’s function
integrated over a path C in the complex k? plane to
include all singularities yields the delta function. The sin-
gularities aré constituted by the set of discrete poles,
corresponding to the discrete spectrum, and branch line
corresponding to the continuum, namely

1
- Ew—jf(g(y, Yk dki=e,(y)8(y—y). (4)

The Green’s function g is constructed from two indepen-
dent solutions of the transverse transmission line equation:

e cosk(y+h) (5a)
cos kh
where
k*=eki—B*>=k;+(e,—~1)ki=k}+0v> (5b)
satisfying the boundary conditions for y <0 and
T=e rthyr (6)
satisfying the boundary conditions for y > 0 such that
I=T=1 at y=0. (7)
We have then
T(v 1:2YT (v 12
T (yik)T (502 ®)

" Jw ‘0277‘,3)
where Z is the total of the transverse equivalent circuit of

Fig. 2(b) (the Wronskian of the transmission line equation
which is independent of position):

. Jjk
wegZ=k, — = tan kh.

r

(©)

It is noted for future use that, with the above choice of
voltage amplhitudes, Z represents also the complex power
of the transverse equivalent circuit.
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It can also be seen that the occurrence of a pole of g in
the complex k> plane at k;=k?, say, coincides with the
vanishing of the total susceptance of the transverse equiva-
lent network. In order to recover (2) from (4), it is then
sufficient to isolate the residues of the poles and modify
the integration path so as to go around the branch line in
the kf plane, by which process (4) can be rewritten, using

(5) and (6), as

S TUsk2)r sk
— jweg—— 7 > |k?

N

T(pik,)I(y;k,)
—jweOZ(ky)

EZ%()’)%(y’)Jrfowdkﬂ(y;ky)qv(y’;ky).

+ 3fowdkyk_vlm

T

(10)
In (10), it is then possible to make the identification
I'(y:k5,)

1/2°
EY 4 kz}

—JW€ 5
ak,
and similarly for y >0, yielding the well-known expres-
sions for the TM surface wave of a grounded slab:

y<0 (11)

o (y) = {

p cosk, (y+h) 0 122)
=A—FF <
(ps(y) s COSkSh ’ y ( a
=A.e ", y=0 (12b)
with
1,2
2e,
A, =
h & 1 14 (1 h
+=1+ 501+
YS ks €r“YS )
kS
y,— —tank h=0. (13)

cr
A substantially analogous procedure leads to the determi-
nation of the component of the continuum ¢( y, k).
Let us introduce in (9) the following quantity of conve-
nience:
k

tana = tan kh

- (14)
y€r

and substitute (14) in (8). The resulting expression for a

component of the continuum corresponding to the value

k,, 0<k, <oo, of the y wavenumber is then

2 _cosk(y+h)
q>(y:ky)=\/;cosa———cas—k;l———, y<0 (15a)
2
= ;cos(kyy—#&). »=0 (15b)
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which satisfies implicitly the orthonormalization condi-
tions (3). It is noted that the angle & above represents, in
fact, the phase shift a ray with propagation constant
(k,,B) undergoes upon impinging on the slab and
reemerging from it.

III. DISCRETE SPECTRUM OF IMAGE GUIDE—

LSM FORMULATION

From a y-directed electric Hertzian potential Ile=
PP (x, y) e B2, the following field components are recov-
ered: '

E, =094, Ey=e,k§+ 3}%\[/9
=— jBd.¥,
i (16)
H =—weBy, H,=0
szjw€8x¢,9'

Considering that we have chosen to view the plane x =0
as the discontinuous interface, that the field is TE to x,
and that we want to keep the transverse electric field
singular at the corner as the unknown, we shall proceed
with an admittance formulation in terms of the pair £, H..
Hence, for a plane traveling wave in air with x-directed
wavenumber k , the modal admittance is

g _ % (17)
0 Ey Wy

while for a short-circuited section of length ¢ and x-
directed wavenumber ¢ the driving point admittance is
q
Y, = j— tangqa. (18)
Wt

Assuming an even symmetry in x of ¢,, E,, and H_, the
field E, of a bound mode in the region x > 0 1s describ-

able as

o . 2 -
E,(x,y) =[) dk,V(k,) - cosk,(y+ h)el

=v,(x, ) (19)
with
K3 B K= k- k2 <0
as for a bound mode k2 < 0.
In the region x < 0, we have
b (x00) =V, %(( ))x )+ [Tavi(o) % ( ")
(20)

where @, (y) is the normalized distribution of a TM sur-
face wave of the slab, considered monomode, and ¢(y, p)
is that of its continuum. Moreover

() = cosq,(x+a)

(21)

cos ¢,
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with
2 2 _.R2 12 _12__
qs = crkO IBS ks - kO
2_12_p2_ 2

k, being the y-directed wavenumber of the slab surface
wave in the dielectric (|y| < — &) and y the decay constant
in air (y > 0). The amplitudes I7(k ), V., V'(p) of the spec-
tral components of E, and the correspondmg ones of H,
are related by (1).

For a bound mode (8, > k), g is pure imaginary but x
remains real. For real g(B,<k,), poles of x occur at
ga=nm/2, n=1,3,5--, when the open-circuit stub cor-
responding to the slab region is resonant. At these values
of p,, however, a short circuit appears at x =0, where
x =1, and the regions to the left and the right of the
interface are decoupled. In order not to violate the bound-
ary conditions on E, their contributions to the p integral
must vanish; hence V(p/,) — 0 sufficiently fast for this to
happen and the integral in (20) must be identified with its
principal value (f).

By utilizing the continuity of H,, E, at x =0 it is then
possible to eliminate the amplitudes v, V., V' and establish
the usual integral equation for the unknown field E(y) =
E (0, y), namely,

B+

[ (6,+6,+6)Edy=0 (23)
~h
where we have introduced the following quantities:
tan qsa
G J‘*"oqs 2+62q)s(y)q)s(y) (243)
2 ro kt2 - k12/

G,(y,y)= jweb;fo dk ——-7(—2—coskyycosk

(24b)
q tan ga

G:(», y)—Jweof zqv(y p)e(y,p). (24c)
We multiply on the Teft by E(y), integrate over y, and
divide by.{E, p,)*, where the bracket notation denotes
integration over y. The following scalar dispersion equa-
tion is obtained, which is illustrated by the equivalent
circuit of Fig. 3:

Y, +Y,+Y/ =0 (25)

where
Y, = jwe, % zafzsza (26a)
= i%%;—) (26b)
= % (26¢)

Y, is the driving point admittance seen by the slab surface
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Fig 3. Equuvalent circuit for transverse resonance equation (26).

wave, Y, that of the air region, and Y/ that of the
continuous spectrum of the slab.
It is noted that

i) Y, and Y are pure imaginary, for, even when ¢ is
pure imaginary, we still have

gtanga = — |q|tanh[cj|a

i) The Green’s functions G, and G/ contain principal
value integrals. Poles of the tan function, arising
from x,, have been excluded before. Simple poles
occur also at k,=k, in (24b) and at p=k, in
(24¢). At these points, however, owing to (16), we
have V(ky) =V"(k,) =0.

Y, and Y,, the admittances in (25), are functions of
the unknown B,. The latter is determined by solv-
ing for B, the dispersion equation (25).

iii)

Once B, is found, the field components are determined
from the potential. The required normalization is accord-
ing to

f_idx f:dytlf(x, y)=1 (27)

where it is noted that a weight factor 1 /¢, is already built
in (2).

Although the normalization constant can be found by
direct integration, it is more effective to use the equivalent
circuit of Fig. 3 by recognizing that the residue of (26) at
resonance fixes V,, and consequently all other amplitudes,
in such a manner that (27) is satisfied, namely

d ,
Vo= jeeom s Y(kP = ki)
t

1V. TuE CONTINUOUS SPECTRUM OF IMAGE LINE

This portion of the spectrum was never investigated
before. As the cross section is two-dimensional, it is appar-
ent that an expansion of the continuum must be written in
terms of two independent wavenumbers, the third being
fixed by the wave equation. We choose (k,, k,) =k, as the
two independent quantities in the air region and, corre-
spondingly, develop the field in the air region in terms of
partial waves of the type

2 2
\/ = cos(k,x+a)\/ = cosk,(y+h).
7 7

It is noted, however, that the “phase shift” « is now a
function of both k, and k, because of the nonseparability.
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Fig. 4. Multiport equivalent circuit for a component of the continuum

It is noted that as the transverse Green’s admittance
function (8) only contains k2(k}2), k., k, can be limited to
the interval 0<k, k,<co. This is a consequence of
choosing to represent the continuum by a set of standing
waves,

We require that the components of the continuum sat-
isfy the orthogonality condition over the guide cross sec-

tion S:
ffSlP(X,y;k k)W (x, y: ki k}) dxdy

=8 (ks — k)
8(k,—k;) (28)
= S(IS, - ]St,)

This fact imposes a generalization on the concept of the
scalar transverse impedance we met in the previous sec-
tions as follows.

The transverse equivalent circuit appropriate to the new
situation is shown in Fig. 4. The discontinuous interface
x =20 acts as an ideal transformer coupling slab compo-
nents with a different wavenumber &, p and partial waves
in air with different wavenumber & .

We shall now generalize the method described in Section
I1. This involves constructing the transverse Green’s func-
tion from an outward and an inward traveling wave at the
interface x = 0.

An outward travelling partial wave in the air region with
wavenumber k, and Fourier amplitude 17(15,) is expressed
as

5 2 . .
P(x, v k) =) = Pk )cosk,(y+ h)e . (29)

Correspondingly, there exists a standing wave in the slab
region expressible as

7x i) = |00, )x ()00 [ o0k, o)

x(x)9 (00| P8, (30)

The continuity equation that replaces (7) is now
(9,0, k) =V(5.0; k,) (31)
which allows the coefficients Q,Q(k,,p) to be deter-
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mined by orthogonality of the ¢, p(p) as

o [2
=/_h\/;°05ky(y +h)e(y)dv  (32a)

(k,.p) =f_°°h\/§cosky(y+h)w(y,p)dv (32b)

given in (A8), Appendix II.

As a mathematical point, it is noted that the continuum
constructed in the following from the above definition (32)
of the transformer ratio will be automatically orthonormal,
but it will only be orthogonal to the expression of the
bound mode as assumed in (32a). Moreover, the coeffi-
cients Q(k,; p) are distributions. This is not surprising,
inasmuch as the continuous modes are not square-integra-
ble; nor do they satisfy the edge condition at the dielectric
corners. This poses no real problems, inasmuch as the
coefficients Q only appear under the integral sign. An
alternative, better conditioned approach would be to ex-
pand the partial air waves and the slab spectrum at x =0
in terms of an appropriate discrete set of expanding func-
tions, possibly satisfying the edge condition, and then
evaluate (32) in the transformed domain as the scalar
products of the coefficients of the expansion.

The impedance looking into the slab region, as seen
from the reference planes at x =07, is given by the paral-
lel combination of the admittance of transmission lines,
each corresponding to a spectral component of the slab,
terminated by a short circuit at x = — 4. This circuit is
embedded in the transformer Q (see Fig. 4) so that at
x=0% we have
w‘O?—( ky’ k;)

= jg,tang,aQ,(k,)Q,(k})

+ jfooodp g(p)tang(p)a-Q(k,;0)0(k}.0) (33)
where now

g2 =(eg—1)k3 + k2 — k’ g2 =k -

Pt (34)

In the air region, two different components k, and &/
do not couple and a component with x-directed Wavenum-
ber k. propagates in the positive x direction with a
characteristic admittance k,_/we,. Hence the admittance
of the air region, in the representation of the partial waves,
is a discrete function of k&, with amplitude k., namely

wpoY(k,, k'y) = kd(k,— k) (35)

with
=V+YV=

Y(k,, k) JjB(k,.k}).

The complex power (times —jwp,) corresponding to the
component k, = (k,, k) is given by

P(k) = onol (k) [ W (36)

If V(k,) is set equal to unity in (29), from (33), (35), and

k,, k'y)V(k,,k;)dk,.
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(36), we have
1
p= ;kx + g, tang.a Qs(ky)Js

+ f: dpq(p)tang(p)a Q(k,,p)J(p) (37)

0 T As
JS=_/O dk,Q,(k,) =\/; cosk h

J(p) = f dk, O kvﬂp)—

are derived in Appendlx II (eq.(A9)).
In the following, for the sake of compactness, we shall
write the second and third terms in (37) together as

Y q,tang,a 0,(k,)J,

where n now stands for a component, discrete or continu-
ous, of the spectrum and the summation for a discrete sum
or integral over p; correspondingly, ¢,(y) denotes the slab
modal distribution. It is again useful to define a “phase
shift” a(k,) such that

where

(38a)

and

+cos(ph — &) (38b)

(39)

1
tana = T Y q,tang,a Q,J,

X n

Using (39) in (10) we have
2 [V(x)ﬁ(x' Ly k) ]

-—k Re
k_+ jk_tana

\/72Q X.(x)9,(y)cosa

—cosk L'+ h)cos(k,x'+ @)

ExP(x,y;k,)tP(x,y sk, (40)
from which the components of the continuum can be
identified as

[2
IP(X,y;kt): ; COSHZann(X)(Pn(y), x<0
2
=;cosky(y+h)cos(kxx+a), x;Q.
(41)

In Appendix I it is verified by direct integration that the
orthonormalization condition (28) is indeed satisfied by

(41).

APPENDIX |
DIRECT CHECK ON ORTHONORMALITY OF
THE CONTINUUM

We want to verify that the condition

dexdyyb(x,y;/St)‘P(X,y;/_ﬂ) =8(k,— k) (A1)

is satisfied by direct integration.
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Define I, as the integration over the slab region. This is
given by

w=[" @ [ e Tok,)0uk

2 cosq,(x+a) cosq,(x+a)
()9 ()~ :

’ '
y) cosacos a

(A2)

€08 ¢q,d c0s g,a

where

a’=a(k’ k’)

2_12_ 12
) qr=k}—k;.
The quantity k, denotes either the y-directed wavenumber
of the slab surface wave in air, — jy,, or the continuous
wavenumber p.

By orthogonality of the @, and integration over x, we
have

cosa 1

£)0,(k)) o

IIZZQn( ’
" c0sq,a €osqg,a @
sin(g,—q,)a
_ [ (g 6{) N
4, 4n

2 cosacosa’

- Y0, (k)0,(K)

n

sin(g,+4,)a
4.t 4,

(g, tang,a — g, tang,a). (A3)
In the air region, we have
] o0 2 ,
12=f0 dxf*hdy;cosky(y+h)cosky(y+h)
2
. = cos(k x + a)cos(kix + o)
m
=3(ky—k;){5(kx—k;)
1 [sin(a—«) N sin(a+ a’)
| k- kL k + k!
s(k — k) s(k — & 2 cosacosa’
- ( y y) ( x x)—'”k)zf—(k;)z
-(kxtana—k;tana’)}. (A4)
Satisfaction of (Al) requires
I+ 1,=8(k,—k})8(k,—k}). (AS)

If a second term in (A4) equals I;, this is indeed the case.
It is now verifiable that (AS) holds provided a'is chosen
such that

k,tanad(k,— k) = L.Q.(k,)2.(k})q,tang,a. (A6)

Integrating with respect to k;, from 0 to oo, we recover
k,tana=Y.J,0,(k,)q,tang,a (A7)

which is just our definition (39) of a.
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APPENDIX II

In (32a), Q, is in fact the Fourier transform of ¢,. This
is given by [15, p. 477]

AS

2 .
Q,(ky) = @(ky)——m e [v,cosk,h—k sink h]
s y .

1 |sin(k,+k,)h sin(k,—k,)h

A8
* cosk h k,+k, k,—k, (AS2)
In (32b),
Q(ky: p) = ~(ky)
1 cos d sin(k-l-ky)h
7 coskh k+k,
sin (k- k, )
k—k,
+cos(k,h—d)8(k,—p). (A8b)
In evaluating
o0
J, = dk k A9
K '/O st( y) ( a)
from (A8a), we realize that
oosm(k +k +oosmk+k)
Z/ k,+k —f ko +k, Tk o=

and that the first square bracket term in (A8a) integrates
to zero [15, p. 406]. Hence, we obtain

S 7 A,
V2 cosk,n
Similarly, in (38b), we obtain
o) =["dk,0(k,,p
()= [ dk,0(k,.p)

Cos &
cos kh

+cos(ph—@). (A9b)
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